Photo processes on self-associated cationic porphyrins and plastocyanin complexes 1. Ligation of plastocyanin tyrosine 83 onto metalloporphyrins and electron-transfer fluorescence quenching.

نویسندگان

  • Hewa M Anula
  • Eugene Myshkin
  • Anton Guliaev
  • Charles Luman
  • Evgeny O Danilov
  • Felix N Castellano
  • George S Bullerjahn
  • Michael A J Rodgers
چکیده

The spectroscopic properties of the self-associated complexes formed between the anionic surface docking site of spinach plastocyanin and the cationic metalloporphyrins, in which the tyrosine 83 (Y83) moiety is placed just below the docking site, tetrakis(N-methyl-4-pyridyl)porphyrin (Pd(II)TMPyP(4+) and Zn(II)TMPyP(4+)), have been studied and reported herein. The fluorescence quenching phenomenon of the self-assembled complex of Zn(II)TMPyP(4+)/plastocyanin has also been discovered. The observed red-shifting of the Soret and Q-bands of the UV-visible spectra, ca. 9 nm for Pd(II)TMPyP(4+)/plastocyanin and ca. 6 nm for the Zn(II)TMPyP(4+)/plastocyanin complexes, was explained in terms of exciton theory coupled with the Gouterman model. Thus, the hydroxyphenyl terminus of the Y83 residue of the self-associated plastocyanin/cationic porphyrin complexes was implicated in the charge-transfer ligation with the central metal atoms of these metalloporphyrins. Moreover, ground-state spectrometric-binding studies between Pd(II)TMPyP(4+) and the Y83 mutant plastocyanin (Y83F-PC) system proved that Y83 moiety of plastocyanin played a critical role in the formation of such ion-pair complexes. Difference absorption spectra and the Job's plots showed that the electrostatic attractions between the cationic porphyrins and the anionic patch of plastocyanin, bearing the nearby Y83 residue, led to the predominant formation of a self-associated 1:1 complex in the ground-state with significantly high binding constants (K = (8.0 +/- 1.1) x 10(5) M(-1) and (2.7 +/- 0.8) x 10(6) M(-1) for Pd(II)TMPyP(4+) and zinc variant, respectively) in low ionic strength buffer, 1 mM KCl and 1 mM phosphate buffer (pH 7.4). Molecular modeling calculations supported the formation of a 1:1 self-associated complex between the porphyrin and plastocyanin with an average distance of ca. 9 A between the centers of mass of the porphyrin and Y83 positioned just behind the anionic surface docking site on the protein surface. The photoexcited singlet state of Zn(II)TMPyP(4+) was quenched by the Y83 residue of the self-associated plastocyanin in a static mechanism as evidenced by steady-state and time-resolved fluorescence experiments. Even when all the porphyrin was complexed (more than 97%), significant residual fluorescence from the complex was observed such that the amplitude of quenching of the singlet state of uncomplexed species was enormously obscured.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of electrostatic interactions causes increase of dynamics within the plastocyanin-cytochrome f complex.

Recent studies on the electron transfer complex formed by cytochrome f and plastocyanin from Nostoc revealed that both hydrophobic and electrostatic interactions play a role in the process of complex formation. To study the balance between these two types of interactions in the encounter and the final state, the complex between plastocyanin from Phormidium laminosum and cytochrome f from Nostoc...

متن کامل

Role of hydrophobic interactions in the encounter complex formation of the plastocyanin and cytochrome f complex revealed by paramagnetic NMR spectroscopy.

Protein complex formation is thought to be at least a two-step process, in which the active complex is preceded by the formation of an encounter complex. The interactions in the encounter complex are usually dominated by electrostatic forces, whereas the active complex is also stabilized by noncovalent short-range forces. Here, the complex of cytochrome f and plastocyanin, electron-transfer pro...

متن کامل

The cytochrome f-plastocyanin complex as a model to study transient interactions between redox proteins.

Transient complexes, with a lifetime ranging between microseconds and seconds, are essential for biochemical reactions requiring a fast turnover. That is the case of the interactions between proteins engaged in electron transfer reactions, which are involved in relevant physiological processes such as respiration and photosynthesis. In the latter, the copper protein plastocyanin acts as a solub...

متن کامل

Site-directed mutagenesis of cytochrome c6 from Synechocystis sp. PCC 6803. The heme protein possesses a negatively charged area that may be isofunctional with the acidic patch of plastocyanin.

This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Thei...

متن کامل

Backbone dynamics of plastocyanin in both oxidation states. Solution structure of the reduced form and comparison with the oxidized state.

A model-free analysis based on (15)N R(1), (15)N R(2), and (15)N-(1)H nuclear Overhauser effects was performed on reduced (diamagnetic) and oxidized (paramagnetic) forms of plastocyanin from Synechocystis sp. PCC6803. The protein backbone is rigid, displaying a small degree of mobility in the sub-nanosecond time scale. The loops surrounding the copper ion, involved in physiological electron tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 7  شماره 

صفحات  -

تاریخ انتشار 2006